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ABSTRACT

This thesis is concerned with the harmonic analysis of

periodic binary sequences using the Discrete Fourier

Transform. The effects of various types of noise on the

spectral content of a sequence are investigated. Assuming

independent identical Normal distributions for errors, a

method for the application of Fisher's test is proposed to

provide a quantitative measure of the significance of

spectral components. This proposed method is implemented by

computer program and applied to the problem of estimating

the period of noise garbled pseudo-random binary sequences.
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I. INTRODUCTION

The effect of noise on the spectrum of a signal is

obvious to the observer. It appears to include many random

components of various sizes. In other words, it looks
"noisy". Figure 1.1 shows the spectrum of a noise corrupted

binary sequence. The ordinates of this spectrum are the

squared magnitudes of the DFT components of the sequence.

Throughout this thesis, spectra will be presented in this

manner. They are commonly refered to as periodograms. When

analyzing the spectrum of a signal, the question naturally

arises of the significance of spectral components. The

researcher must distinguish the spectral components which

represent the signal being studied from those which are

merely random perturbations caused by noise. This research

is primarily concerned with finding a method to

quantitatively evaluate the statistical significance of the

components of a spectrum.

This research will restrict attention to the analysis of

a small, but important class of periodic binary sequences,

namely, pseudo-random sequences and some close relatives.

These sequences, their properties and their applications

will be described briefly. Some methods used to generate

these sequences will also be explained.

The possible effects of noise on the spectral content of

such sequences will be briefly investigated. It is assumed

that the sequence is subjected to the types of noise which

might be expected to occur in a communications system making

use of such a sequence. No detailed knowledge of the system

is assumed. The only information available is a garbled

version of the original sequence. Note that this is a

highly simplified situation in that no provision is made for

data modulation. Future research will do well to consider

8



°I
-)

0o-~0-

C:)
C*)

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

PerLod VaLues ore 512/k

Figure 1.1 Typical Noise Corrupted Spectrum.

various methods of data modulation as well as possible noise

sources. In order to facilitate proceeding with the

quantification of spectral component significance, the

further simplifying assumption is made that all noise

effects can be modeled as independent identically

distributed Normal random variables.

In conducting harmonic analysis to reveal the periodic

structure of a time series in the presence of noise, random

fluctuations alone can account for some harmonic components

being greater than others. The researcher must therefore

use some means to determine the plausibility that a

particular component represents a real periodicity. In

1929, R.A. Fisher developed a test for the significance of

harmonic components [Ref. 11. Over the past 20 years

several researchers have applied Fisher's test in a variety

of different ways [Refs. 2,31. Fisher's test will be

briefly presented along with some of these more recent

9



applications. This thesis proposes the application of

Fisher's test in a new way which is more flexible than the

methods employed by previous researchers. This will provide

the researcher with more meaningful quantitative information

upon which to base his conclusions. This proposed method is

then applied to the problem of estimating the period of

pseudo-random and related binary sequences in the presence

of noise.

1
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II. DATA SEQUEE

This research is first concerned with the analysis of

periodic binary sequences which may be referred to in

general as pseudo-random sequences. These sequences are

called pseudo-random because they exhibit certain properties

associated with randomness, namely, balance, run and

correlation properties. The property of balance means that

each period of a sequence contains approximately as many

zeros as ones. The run property refers to the occurrence of

strings of consecutive ones and zeros. One half of the runs

present are of length one, one forth are of length two, one

eight are of length three and so on. Correlation refers to

the property that if a sequence is compared with a cyclic

shift of itself, there will be an approximately equal nuiber

of agreements and disagreements, except for the case when

the cyclic shift is a multiple of the sequence period. In

that case all bits will agree. As such their spectra appear

similar to that of noise or similar to a truly random

sequence. These sequences and near relatives were chosen

for study because of their importance in a wide variety of

applications. Examples of applications of these sequences

include spread spectrum systems and secure communications

among many others. Specifically, the sequences considered

are (maximal) m-sequences, Gold codes and de Bruijn or full

sequences. [Ref. 4: pp. 24-27]

A. M-SEQUENCES

Any periodic sequence may be generated by a linear
feedback shift register [Ref. 5: p. 4111. For a shift

register of n stages, an m-sequence of length 2**n -1 may be

generated. m-sequences are termed maximal because they are

the longest sequence which may be generated with a specified

1i



number of feedback shift register stages using a linear

feedback rule. To further describe the structure of

m-sequences, consider the following. If a window of width n

equal to the number of stages in the shift register is slid

along the m-sequence, in one period of the sequence all

possible non-zero binary n-tuples would be observed. The

various n-tuples can be viewed as elements of a finite

field. The successive n-tuples represent powers of a

primitive element in the multiplicative group of the field.

Thus the m-sequences represent the structure necessary to

determine multiplication within the field. Addition is

accomplished by modulo-two component-wise addition of the

binary n-tuples. m-sequences play an important part in

spread spectrum systems as well as in other applications.

The extensive mathematical underpinnings of the design

process of an m-sequence will not be discussed here.

Suffice it to say that a feedback shift register may be

designed to generate the m-sequence using a primitive

polynomial described by Galois field theory. At each clock

signal the storage registers pass their bits along to their

successor locations. The bit computed from the current

contents of the registers using the polynomial feedback rule

is returned to the leftmost register. An example of a

feedback shift register designed to generate the period 7

m-sequence ... 0010111001011100... using the polynomial

f(x)=x3 +x+l is shown in Figure 2.1. In this figure, the

boxes represent storage devices (flip-flops) and the circle

represents a modulo-two adder. Upon receipt of each clock

pulse, the storage devices simultaneously shift their

present contents to the right. The output of the adder is

fed back to the left most storage device.

The m-sequences used in this research are generated by

an interactive FORTRAN program. Appendix A contains a copy

of this program. This program prompts the user to input the

12
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Figure 2.1 Feedback Shift Register.

coefficients of a primitive polynomial which defines the

feedback paths of the feedback shift register. The program

then generates as many bits of the m-sequence as the user

desires. Tables of polynomials can be used to input

polynomial coefficients for any desired sequence period

(less than 2**15 -1) [Ref. 4: pp. 62-65]. Longer sequences

can be constructed, but are not germane to this study.

Figure 2.2 shows the spectrum of a period 15 m-sequence

derived using a 512 point DFT. Signal components are

smeared over several adjacent frequencies because the period

of the sequence does not evenly divide the number of points

in the DFT. It should also be noted that the spectrum

appears quite well structured. This simple, orderly

spectrum can be anticipated because of the simplicity of the

theoretical power spectral density. The power spectral

density is easily obtained by taking the Fourier transform

of the periodic autocorrelation function (applying the

Wiener-Khinchin theorem). The periodic autocorrelation

function is composed of a constant value of -1/period with a

triangle function of height one occuring once each period.

Transformed, the resulting power spectral density is

composed of discrete elements occuring at intervals of

1/period within a sinc squared envelope. Although the

spectrum obtained by the DFT is not a good estimate of the

13
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theoretical power spectral density, its simple structure is

a reflection of the simplicity of the theoretical spectrum.

[Ref. 5: pp. 387-388]
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Figure 2.2 Spectrum of an m-Sequence.

B. GOLD CODES

Gold codes are designed chiefly for application in

spread spectrum, multiple access systems. They are useful

in this application because of their well controlled cross

correlation properties, (i.e. they have a three valued

cross-correlation function). A Gold code is simply the

modulo two sum of an appropriately chosen pair of

r-sequences of the same period. These sequences are termed

a preferred pair. For a preferred pair of r-sequences an

entire family of Gold codes can be generated by shifting the

relative phases of the in-sequences. A complete Gold code

14



family consists of 2**n +1 codes, where n is the number of

stages in the feedback shift registers. An example of a

Gold code generator is shown in Figure 2.3. Here the

preferred pair of sequences are generated by the polynomials

f(x)=xS+x 2 +1 and f(x)=xS+x 4+x3+x2 +l, both of which produce

m-sequences of period 31 and hence the resulting Gold code

is also of period 31. [Ref. 5: pp. 404-4071

CLOCK

OUTPUT

Figure 2.3 Gold Code Generator.

An interactive FORTRAN program was written to generate

Gold codes. A copy of this program may be found in Appendix

B. This program is composed of two m-sequence generators

and a modulo-two adder. Depending upon the initial load

specified for the feedback shift registers of these two

generators, m-sequences of different phases are produced.

When the m-sequences are added together, a Gold code is

produced. An example of a Gold code spectrum is shown in

Figure 2.4. This spectrum was derived using a 512 point

DFT. This Gold code is a period 31 sequence generated by

the generator shown in Figure 2.3. It is important to note

15



that the spectrum of a Gold code is not nearly as well

structured as that of an m-sequence. This fact may again be

anticipated by considering the more complex nature of the

theoretical periodic autocorrelation function of a Gold

code. It is a many valued function which depends on the

particular Gold code for the determination of those values.

Taking the Fourier transform results in a spectrum which is

difficult to describe mathematically. The spectrum also

depends on the particular Gold code being examined. It is

therefore no surprise that the spectrum of a Gold code

obtained by the DFT is not nearly as simple and well

structured as that found for an m-sequence. In the example

pictured, the Gold code has 12 ones and 19 zeros in each

period instead of the 16 ones and 15 zeros present in each

period of the m-sequences used to generate it. It is poorly

balanced. Gold codes do not exhibit the properties of

pseudo-randomness nearly as well as m-sequences. Even

though Gold codes may be found which are well balanced, they

still do not exhibit the other pseudo-randomness properties

and their spectra are not well structured.

C. FULL SEQUENCES

Full sequences are a third example of shift register

sequences considered. These sequences are of the non-linear

feedback type. Because these sequences are more complex to

analyze and in general more complex to generate, they find

application in secure communications. In structure, full

sequences are similar to m-sequences. They are sequences of

length 2**n with every binary n-tuple appearing in one

period of the sequence. A full sequence can be constructed

from any m-sequence by simply adding one additional zero to

the longest string of zeros present. This is by no means

the only method available to generate full sequences.

Numerous algorithms for generating full sequences are

available in the literature. [Ref. 4: pp. 128-141]

16
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Figure 2.4 Spectrum of a Gold Code.

FORTRAN Programs were written to generate full sequences

by adding a zero to a 1previously generated rn-sequence.

' Appendix C contains an example off such a program. An

example of the spectrum of a full sequence is shown in

" Figure 2.5, derived using a 512 point DFT. In this case the

fullI sequence was found by modi fying the rn-sequence

generated using the polynomial f(x)=x4+x+l. The resulting

full sequence is of period 16. Note that since the period

of the full sequence evenly divides the length of the DFT,

no spectral smearing is observed.

17
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III. NOISE EFFECTS

The sequences described in the previous chapter are

assumed to have been used in a communications system and

garbled versions of them have been recovered. Once again,

no specific knowledge of the communications system or

channel is assumed or developed in this thesis.

Observations are made of the effects of noise on the

spectrum of the sequences discussed in Chapter II. Many

error scenarios by which the original sequence could be

altered are investigated. Some of the more important

situations are described in what follows.

A. ADDITIVE BIT ERRORS

One possible manner in which a sequence could be altered

is that individual bits are subjected to noise and therefore

are incorrectly recovered. Receiver thermal noise or

channel noise could conceivably cause such individual bit

errors to occur in some random fashion.

A FORTRAN program was written to simulate this error

pattern and to study its effect on the spectrum of a

sequence. Appendix D contains a copy of this program. The

rate at which errors are introduced is set interactively by

the user. The IMSL subroutine GGUBFS is used to generate a

random number for each bit of the input data sequence. Each

random number is tested to see if it falls within a range

defined by the user specified error rate. If it does appear

in that range, the corresponding bit is reversed. In this

manner, each data bit is subjected to the same probability

of error. The original sequence is modified to reflect

these random bit errors and its DFT is computed using the

IMSL subroutine FFT2C and is plotted.

19



Thorough testing was carried out for the three classes

of sequences of chapter II at various error rates. Figures

3.1, 3.2 and 3.3 show examples of these tests for the simple

case of a period 16 full sequence formed from the m-sequence

generated by f(x)=x4+x+l. The probability of error used was

16.6%, 25% and 33% respectively. The introduction of random

bit errors is reflected in the noise floor which.may be

observed at all frequencies. As more errors are introduced,

the noise floor increases while the signal components

decrease until the signal is eventually lost in the noise.

As the error rate changes, the location of the signal

components remains constant while their magnitudes, relative

to the noise components, change. Note that magnitudes on

the ordinate axis decrease as the error rate increases in

each successive example. Note the large component at k=148

in Figure 3.3. This component is due to the noise alone.

In this way errors can be made in spectral analysis due to

the effects of additive bit errors.

B. BURST ERRORS -

Another means by which a sequence can be altered by

noise is that bursts of errors might occur. Channel noise

could account for such an event. This type of noise may

also more closely model the case of a structured noise

source such as an intelligent jammer.

A FORTRAN program was written to simulate the occurance

of bursts of errors. This program may be found in Appendix

E. To run this program the user must input the probability

of a burst occuring, the length of each burst and the

probability of bit errors occuring within a burst. As the

program moves sequentially through the data sequence, a

random number is generated for each data bit using the IMSL

subroutine GGUBFS. If that random number falls within a

range defined by the specified probability of a burst

occuring, the program jumps into a burst error loop. The

20
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Figure 3.3 Additive Bit Errors: 33% error rate.

first and last bits of the burst are changed to define the
bounds of the error burst. All data bits within the burst
are subject to error with the probability specified. This
is accomplished using a random number generator in the same
fashion as described above for a burst occuring. The
program then jumps back into the data sequence immediately
following the burst. When the entire sequence has been

subjected to bursts of errors its DFT is computed using the
IMSL subroutine FFT2C and is plotted.

Numerous tests were also carried out for the burst error
case. One such test is shown in Figure 3.4. For this test
the same period 16 full sequence is used as was used in the
additive bit error examples. The probability of a burst
occuring is 10%., the length of the burst is 17 bits and the

probability of error within each burst is 33%. This results

in 131 errors occuring, or an overall error rate of 25%.
This is comparable to the situation in Figure 3.3 for the

22



additive bit error case. As can be observed in this

example, the effect of bursts of errors on the spectrum is

quite similar to that of additive bit errors. A noise floor

is again observed at all frequencies, with the magnitude of
signal components diminished. Signal components still

appear in their proper locations. In all respects, the

effects of bursts of . errors on the spectrum is

indistinguishable from that of additive bit errors.

0
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mLn

0 L JL i 1

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

PerLod Vatues are 512/k

Figure 3.4 Burst Errors.

C. TIMING ERRORS

Another class of error through which a sequence could be

garbled is that a bit of the sequence might occasionally be

lost or inserted. For example, poor synchronization in the

receiver could result in sampling outside the proper bit

interval and thereby result in the loss of a bit. Poor

timing could also lead to sampling twice during the same bit

interval and thereby result in the insertion of a bit.

23



Timing errors resulting in the loss of bits in a random

fashion are modeled by a FORTRAN program. This program may

be found in Appendix F. To simulate this situation the

program assumes that sampling normally takes place at the

exact middle of a bit interval. At the prompting of the

program the user sets a bound on how far the sampling

instant could possibly slip forward in one bit interval.

The program then moves iteratively through the sequence and

generates a random number during each bit interval. This

random number is generated by the IMSL subroutine GGUBFS and

is constrained to lie within a bound set by the user. This

random number is then added to the sampling time, which

starts off at the middle of the bit interval. If the

modified sampling time falls outside the bit interval, that

bit is considered lost and is therefore removed from the

sequence. In this manner the timing interval is continually

sliding forward a random amount during each bit interval and

occasionally a bit is lost. The DFT of the resulting

sequence is then computed using the IMSL subroutine FFT2C

and is plotted.

Tests carried out with this error model reveal some

significant differences from the previous models considered.

Random removal of bits from a periodic sequence causes the

period of the sequence to fluctuate. Inspection of the

signal spectrum reveals that the location of signal harmonic

components is changed. For the removal of even a few bits,

the fundamental frequency can be shifted out of its proper

location. This shifting becomes progressively worse at

higher harmonics of the fundamental.

Spectral smearing is another effect observed. The

signal components are spread out over several adjacent

frequencies. This effect also becomes progressively worse

in higher harmonics.

24

II4L

MEMOF



Figure 3.5 shows an example of these phenomena for the

same period 16 full sequence used in previous examples. The

bound on how far the sampling time can slip forward in one

sampling interval is set at 0.3. This results in the

deletion of 119 bits of the sequence. Note that the higher

harmonics of the fundamental frequency are lost in the

noise.

L7
'i-U C D)

U-)

CC\

0 16 3 2 438 64 30 9'6 112 1238 14 4 160 176 192 208 224 24' 256

Period VaLues cre 512/k

Figure 3.5 Random Bit Deletions.

In a similar fashion, a FORTRAN program was also written

to model the random insertion of bits into the sequence.

This program may be found in Appendix G. In this case, the

sampling instant is allowed to slip back a small random

amount during each bit interval. If the sampling time falls

* within the previous bit interval, that bit is inserted into

the sequence again. The timing interval is therefore

continually sliding back in a random fashion and a bit is
SW'occasionally repeated. A DFT is computed of the resulting

sequence and the spectrum is plotted.
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In the case of random bit insertions, tests produced

results analogous to those found in the case of random bit

deletions. The only difference is that the period of the

sequence is tending to grow longer and therefore the

spectral peaks shift in the opposite direction.

As an example of the effect of random bit insertions,

Figure 3.6 shows the spectrum of the same period 16 full

sequence with 119 bits inserted at random. The bound on how

far the sampling time can slip back in one sampling interval

is set at 0.3.
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Figure 3.6 Random Bit Insertions.

Another FORTRAN program was written to combine these two

*timing error models. Appendix H contains this program.
i This program functions in exactly the same manner as the two

previous programs except that during each bit interval it is

equally likely that the sampling time slip forward as back.

Consequently, a bit is occasionally lost from the sequence

and a bit is occasionally inserted into the sequence. The
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net effect is that of an instability or "jitter" in the

timing.

This case produced some interesting results. Since the

net effect of deletions and insertions left the period

relatively unchanged, the harmonic signal components

remained in their proper locations. There is however

considerable spectral smearing present and this effect is

progressively worse in higher signal harmonics. The higher

harmonics are also progressively attenuated. Compared to to

effects of additive bit errors and bursts of errors on the

spectrum, timing errors cause some very different and much

more severe alterations.

Figure 3.7 is the spectrum of the same period 16 full

sequence used in previous examples. In this example, it has

been subjected to both random deletions and random

insertions of bits. 52 bits have been deleted, while 45

bits have been inserted.
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Figure 3.7 Timing Errors.

27

M'6v & p . --



D. CONCLUSIONS ON NOISE EFFECTS

From the discussion above it is obvious that attempting

to gather information from the spectrum of a periodic

sequence subject to the effects of timing errors might prove

to be a frustrating endeavor. Future studies could be

conducted to examine sequences subjected to such effects.

It should be easy to tell the difference between

synchronization errors and additive errors for an analysis

of the respective spectra. A further limiting assumption

about noise effects must be made in order to proceed towards

the goal of being able to quantitatively evaluate the

significance of spectral components .of a periodic sequence.

All noise processes considered in this thesis will hereafter

be assumed to result in independent identical Normal

distributions for errors in the periodic sequences being

studied. That is, the only error effects allowed will be

random bit errors. Perfect bit synchronization will be

assumed, and hence, the possibility of timing errors is no

longer considered.

2
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IV. F IEHOD ME TTS APPLICATIONS

In harmonic analysis, conclusions concerning the

periodic nature of a time series are based on the magnitudes

of harmonic components of the spectrum of the time series.

It can be a difficult and often misleading task to look for

peaks in such a spectrum. Components at the Fourier

frequencies are bound to show many peaks and troughs due to

the fact that they are approximately independent [Ref. 6: p.

110]. The spectrum of a set of purely random numbers will

consist of some harmonic components which are larger than

others by chance alone. One approach to determining the

reliability of the harmonic components of a time series

might therefore be to compare them to the harmonic

components derived from a purely random time series. .This

is the approach of Fisher's test of significance in harmonic

analysis.

In general, a significance test is concerned with

deciding whether or not a hypothesis concerning statistical

parameters of a sampling distribution is true. The

following steps are typically taken:

1. A null hypothesis is decided upon.

2. An alternative hypothesis to the null hypothesis is
developed.

3. A statistic, (which is a function of observations
made), is decided upon to test the null hypothesis.

4. A critical region of the sample space is chosen such
that the probability of a particular sample being
observed within that region, conditioned on the null
hypothesis being true, is very small. This
probability is called the significance level. It is
sometimes expressed as a percentile, which is found by
taking 100*(-probability).

5. Applying the test of significance involves rejecting
the null hypothesis when an observed sample falls
within the critical region. Since the probability of
a sample appearing is quite small, when the null
hypothesis is assumed true that appearance is
regarded as evidence against the null hypothesis.
[Ref. 7: pp. 103-105]
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A. FISHER'S METHOD

In 1929 R.A. Fisher, [ Ref. 11 developed a test for

significance in-harmonic analysis. To provide the necessary

background, a brief outline of Fisher's test is presented.*

For a detailed derivation of the formulas used in Fisher's

test see Grenander and Rosenblatt [Ref. 8: pp. 91-941.

Consider a series, x(t)=s(t)+n(t), t=1,2,...N, which has

been sampled at equal time intervals. The series s(t) is

deterministic, while the series n(t) is composed of

independent identically distributed Normal random variables.

n(t) is N(O,var), where the variance is unknown. The

objective of this test is to make some statistical inference

concerning the periodicity of s(t). The null hypothesis is

that only n(t) is present, that is, the observed sample has

no periodic activity. The alternative hypothesis is that

periodic activity is present in the observed sample.

The sequence x(t) may be decomposed into its harmonic

components using the Fourier series representation. This is

accomplished in the following manner:

m

x(t) = a0/2 + E Iakcos(27kt/N) + bksin(27rkt/N)J
k=l

where m is the total number of harmonic components

(m=(N-2)/2). Also, the coefficients ak and bk and the

constant ao are computed as follows:

N
a o = 2/N E x(t)

t=1

N
ak = 2/N E x(t)cos(21rkt/N)

t=l

N

bk = 2/N E x(t)sin(27rkt/N)

t=l
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The harmonic amplitude, ck, is defined as:

Ck = (a2+b2)i

The test statistic used in Fisher's test is the normalized

harmonic amplitude, gk, defined as:

m

gk = /
k1l

A normalized quantity is used to remove the effect of the

unknown variance and to restrict the values of this test

statistic to lie between zero and one. The values of gkare

re-ordered according to size with g1>g2> ..>gm .

Fisher derived the following expression for the

probability that the largest normalized harmonic amplitude,

g1, is greater than a parameter x. This probability is

conditioned on the null hypothesis being true, that is, only

noise is assumed to be present.

P(gl>x) = m(l-x)m-4 - m(m-1)(1-2x)m-l+."

2

•..-+ (-l)m-lm!(l-Lx) m- 1  (4.1)

L! (m-L)i

The variable L in this equation represents the largest

integer less than 1/x. This equation is solved for x in

terms of p and m. It is then used to generate tables of x

for a few particular values of p and for various values of

m. Fisher recommends using p=0.05 and various values of m

depending on the number of data points available.

Since p represents the probability that noise alone

could account for g, being greater than x, 1-p suggests how

much confidence could be placed in the assumption that a

periodicity of the signal caused this. Therefore, 100*(1-p)
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is called the significance level percentile. In

recommending the use of p=0.05, Fisher suggests that

harmonic components within the 95th percentile are of

interest.

A simple example can best illustrate how Fisher's test

is applied. Suppose that a data set is examined to

determine the presence of a periodic signal within the 95th

percentile. The value of gl is computed from the data.

Entering the table for p=0.05, the value of x is extracted

which corresponds to the number of data points used. If it

is observed that g1 <x, no signal periodicity is present:

the null hypothesis is accepted. If g1 >x, a signal

periodicity is assumed to be present in the 95th percentile:

the null hypothesis is rejected and the alternate hypothesis

is accepted.

Later, Fisher's test was extended to test for the

Asignificance of the g values of lesser magnitude (Ref. 91.
For the rth largest normalized harmonic amplitude, gr, the

probability that gr exceeds a parameter x is given by:

L

p(gr>x) = M! j (-l)Jr(l-jx)m -1 (4.2)
(r-l)! . j(m-j)! (j-r)!

j=r

Once again, this is conditioned on the presence of noise

alone. This formula actually indicates the probability that

the r components gl, g2,*"' gr, are greater than a parameter

x. This extended version of Fisher's test is used in the

same manner as Fisher's original test.

If independent identical normal distributions for errors

cannot be assumed, then Fisher's test still provides a

reasonable approximation to a measure of significance

[Ref. 6: p. 1111.
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B. APPLICATION BY NOWROOZI

In 1966, Fisher's test was applied by A.A. Nowroozi

(Ref. 21 to the problem of estimating the period of

eigenvibrations of the earth. Td facilitate his analysis,

Nowroozi first developed tables of x values for the p and m

values of interest in his study. His tables were designed

to test for the presence of the largest harmonic amplitude

only.

Nowroozi proposed two practical applications of Fisher's

test.
1. First Anlic a

The first practical use of Fisher's test proposed

was almost identical to the method presented by Fisher. To

briefly mention it's key points:

1. A decision is made prior to application of the test
about the significance level of interest.

2. Next computed and compared to the tabulated
parameterlx. It gl>x the associated period is within
the percentile indicated and if gl<x it is not.

3. The same test is applied to.g 2 , g3 , etc.

This application of Fisher's test has a few-

weaknesses. The application of the test for gl is made to

succeedingly smaller values of gr instead of using the

extended version of Fisher's test. This has the effect of

possibly rejecting harmonic components which would have been

accepted as significant by the extended version. Also,

selecting a confidence level prior to application of the

test is a somewhat arbitrary decision which could exclude

some important data.

As an alternative to the first method discussed

above, Nowroozi suggested the following:

1. Plot the squared harmonic amplitudes, (ck's squared),
against the corresponding periods whicH they
represent.

2. Decide upon a significance level.
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3. Calculate a minimum significant squared amplitude, C,
from the .appropriate tabulated x using the
relationship:

m

C = X cz

k=l

4. Draw a horizontal line across the plot of step (1) at
the level of C.

5. Any sTectral peaks having squared amplitudes above
this Yine are significant at the level chosen
previously.

Nowroozi's second approach is simpler to implement

than the first, however, it shares the same weaknesses. It

is this application of Fisher's test which Nowroozi actually

used to estimate the periods of eigenvibrations of the

earth. Nowroozi himself labeled some peaks as plausible

which actually failed his test. He was therefore not

totally confident himself in the method for applying

Fisher's test which he developed, but felt that it was

perhaps too severe.

C. APPLICATION BY SHIMSHONI

In an effort to improve the effectiveness of the

analysis carried out by Nowroozi, Shimshoni (in 1971)

suggested a more proper application of Fisher's test

[Ref. 31. He pointed out that in Nowroozi's application of

Fisher's test, every component below a certain level of

significance is rejected. In this he failed to take into

account that the test actually refers only to the largest

component. For this reason, some components which seemed

quite plausible were rejected by the test which Nowroozi

performed.

Shimshoni suggested that Fisher's test should be applied

in its extended form. To facilitate this, he developed

tables of x values for several of the largest normalized

harmonic amplitudes instead of only the first. Again these

tables allowed for various values of p and m. Using these
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extended tables, he proposed the following practical

application of Fisher's test:

1. Decide upon a significance level of interest.

2. Compute and sort normalized harmonic amplitudes (g's)
in decreasing order (with gr =the rth largest
amplitude).

3. In the table for the significance level chosen, look
up x for r=l.

4. Accept all components greater than x as being
significant at the desired level.

5. For the first amplitude in the list which fails, look
up the x which corresponds to it's position in the
sorted list.

6. Continue to accept amplitudes which are greater than
this new value of x.

7. Repeat this process until reaching an amplitude which
is smaller than the tabulated x value which
corresponds to it. This amplitude and all succeeding
amplitudes are thus failed at the chosen level oy
significance.

This method proposed by Shimshoni is a more proper

application of Fisher's test in that it makes use of the

extended form of his test. As a result, Shimshoni's method

does accept some of the plausible periods which Nowroozi is

forced to reject. His method does however suffer from the

weakness of having to select a level of significance prior

to applying the test. This could possibly result in the

rejection of valuable data. For example, a spectral

component within the 94.9th percentile will be rejected if

only the 95th percentile is considered. This algorithm is

also cumbersome to implement due to the necessity for

several table look-ups and the possible need for

interpolation.
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V. A ROPOS THOD ORE AoLIAI TE IHE'ST

A. DEVELOPMENT OF A PROPOSED METHOD

Having discussed Fisher's test and the various methods

by which it has been applied, the question which naturally

arises is one of optimization. How might Fisher's test

"best" be applied? First, the criterion by which "best" is

judged must be specified:

* The most applicable; that is, the method best suited to
the analysis of pseudo-random sequences.

* The most straightforward; that is the simplest and
most direct met!hod of performing calculations.

* The most exhaustive; that is, using the test to its
fullest possible extent not disregarding any useful
information which it might provide.

In terms of applicability, Fisher's test should be used

* .in its extended form in the analysis of pseudo-random

sequences. Fisher himself suggested conditions under which

the extension of his test might prove especially useful;

"The second may be used in a test whether the second
largest is significant such as might be useful if, when
the largest is doubtfully significant, it may still be
sus ected that the two largest are due to some
systematic causes. [Ref. 9: p. 16]

It was shown earlier that in the case of the sequences of

chapter II, their spectra consists of several harmonically

related components of comparable magnitude. For the

situation of interest, several of the larger components can

be expected to be due to the same systematic cause; the

periodicity of the sequence. Applying Fisher's test in the

extended form appears to be best suited for the analysis of

the sequences considered in this thesis.

Fisher's test could be applied in a straightforward

manner, without the use of tables, by direct calculation of

probabilities from Eq. 4.2. Since this is a calculation of
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the probability that gr exceeds the value of x, a suitable

parameter x must be chosen. Selecting x equal to the value

of gr observed would result in calculating the probability

of the r largest normalized harmonic components occuring at

higher amplitudes than those observed. In this manner, the

calculation of the probability that gr exceeds the value of

gr observed provides a measure of the significance of that

particular value of gr observed. Applying Fisher's test in

this way, the difficulties involved in developing extensive

tables to meet the needs of each particular situation and in

using these tables in calculations are avoided. It is also

no longer necessary to decide upon a level of significance

in advance, a practice which can result in the loss of

valuable data.

Finally, making use of the foregoing suggestions should

result in the most exhaustive use of Fisher's test.

Applying the test in it's extended form to as many of the

larger components as possible would return the maximum

amount of useful information. Components slightly smaller

in magnitude than the largest will not be routinely

disregarded for failing to exceed a predetermined level of

significance. Applied in this manner, Fisher's test gives

the spectrum analyst a quantitative basis upon which to not

disregard any "good" information or accept any "poor"

information.

The specific steps in this proposed method of applying

Fisher's test can now be outlined:

1. Compute the EFT of the data semuence to find the
magnitudes of harmonic components Cc s).

2. Calculate the normalized harmonic components (g's).

3. Sort the normalized harmonic components in order of
decreasing magnitude (gl>g2>.. >gm).

4. Calculate the measure of significance of as many of
the largest normalized harmonic components as is
desired for analysis.

5. Sort the harmonic components according to their
respective measures of significance from the smallest
to he largest robability calculated. The smallest
probability is he highest measure of significance.
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6. Perform analysis of the signal spectrum on the basis
of the calculated measures of the significance of
harmonic components.

Most of the steps listed are straightforward and simple

to execute. The only step which presents a computational

challenge is the actual calculation of the measures of

significance. This step will therefore be discussed in more

detail.

B. CALCULATION OF THE MEASURE OF SIGNIFICANCE

The measure of significance of a particular normalized

harmonic component is calculated by direct application of

Fisher's test in its extended form. Since no level of

significance is set beforehand, what is actually calculated

is the probability that a particular normalized harmonic

component will exceed its measured level. Once again, this

is under the assumption that only noise is present. This

provides a measure of the significance of a spectral

component. A small probability corresponds to a high level

* of significance.

The formula u-sed to calculate harmonic significance is

restated as follows:

L

P(gr>x) = m! (l)J-r(ljx)m-l

(r-l)! La j(m-j)!(j-r)!

j=r

To facilitate programming, this equation is expressed

as:

Lm 1- I
L ( l-jx (m-k+l

p(gr>X)=  1 J(- )J-r I (5.1)

TJ(r-k) j=r (j-r-k+l

k=l

38



Expressed in this form, the factorials and powers within the

summation can be calculated simultaneously, by combining one

term from each product at a time. In this way, the loss of

accuracy associated with floating point arithmetic involving

very large and very small numbers can be avoided.

A FORTRAN program was written to test the calculation of

harmonic significance using Eq.5.1. Extended precision was

used in calculations in an effort to preserve as much

accuracy as possible.

Despite precautions taken in programming, making test

computations often led to an underflow condition (magnitude

less than 10**-87). In an effort to prevent this, the

product series was truncated when terms of magnitude less

than 10**-75 were encountered. Since the product series is

strictly decreasing, this was not detrimental to the

accuracy of computations. Although computations involving

1 smaller arguments occasionally led to an underflow
condition, this did not adversely affect the accuracy of

computations.

To prove the accuracy of the computer algorithm

%. developed, a comparison test was conducted. The data used

for this comparison was obtained from Shimshoni [Ref. 3: pp.

374-3751. Shimshoni obtained his data by iteratively

solving Eq.5.1 for x. Although he does not specify the

degree of accuracy of his data, it is assumed that figures

are accurate to five significant figures as listed. The

results of these tests are summarized in Table 1. In this

table, m represents the total number of harmonic components

and r represents the order of a normalized harmonic

component in the sorted list.

As Table 1 indicates, a quite acceptable error rate of

less than 1.5 percent was achieved even for large values of

m. The m values of interest in this thesis are 255 or less.
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TABLE 1

PERCENT ERROR OF HARMONIC SIGNIFICANCE COMPUTATION

m r=l r=2 r=5 r=10
20 0.003 0.021 0.020
50 0.011 0.057 0.046 0.022
100 0.005 0.071 0.071 0.070
300 0.021 0.170 0.136 0.860
500 0.093 0.065 0.867 0.230
1000 0.400 0.195 1.460 1.180

C. PROGRAM FOR THE APPLICATION OF FISHER'S TEST

A FORTRAN program was developed to apply Fisher's test

to the analysis of noise corrupted, pseudo-random sequences.

This program is contained in Appendix I. This program was

designed to work in conjunction with previously written data

generation and noise introduction programs. The program

accepts as input the magnitudes of harmonic components

computed by the DFT in the additive bit error program. This

program then performs the sequence of steps outlined in

section A of this chapter, the proposed method for the

application of Fisher's test. As output, the program plots

the spectrum and provides a table summarizing the results.

The most significant components are also labeled with their

respective measures of significance.

Fisher's test can calculate a measure of significance

for the largest normalized harmonic components for which Eq.

5.1 can calculate a probability. As smaller components are

used in Eq. 5.1, the probabilities computed approach unity.

This implies that the component is almost certainly due to

the noise alone. Attempting to calculate probabilities for

even smaller components results in values outside the

defined range for probabilities. For that reason, the

program was designed to ignore any such results.
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Experimentation suggests that Fisher's test could generally

find a measure of significance for harmonic components of

magnitude greater than 1.5 standard deviations from the

mean.

Another quest4 -- to be addressed is that of determining

how large the DrE must be in comparison to the period of the

sequence being studied.. Experimentation shows that, in

general, the DFT should be applied to data at least four

times as long as the period of the sequence being studied.

Otherwise Fisher's test as implemented will not produce any

useful information. If only four periods or less are

available, there will be so many multiples of the

fundamental frequency present that th- normalized harmonic

components will be too small to allow for calculation of

probabilities. On the other hand, the larger the DFT is

with respect to the sequence period, the larger the amount

of information available will be.
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VI. E ATING PRO A PSEUDO-RANDOM S

Estimating the period of a noise garbled, pseudo-random

sequence is a critical factor in the analysis of such

sequences. Once an accurate estimate of the period has been

ascertained, further analysis into the method by which the

sequence was generated is possible.

A. ESTIMATION PROCEDURE

The spectrum of a noise garbled, pseudo-random sequence

is analyzed to produce an estimate of the sequence period.

The analytic method adopted is Fisher's test as proposed in

the previous chapter. Pseudo-random and related sequences

analyzed include those discussed in chapter II. Noise

effects are limited to the random bit errors (IID, N(O,Var))

for which Fisher's test was designed.

As was observed in the discussion of pseudo-random

sequences, their spectra should, with adequate signal to

noise ratio, consist of larger amplitude components at the

fundamental frequency and at several multiples of it. It is

often the case, however, that the fundamental frequency

component is much smaller than some of its multiples. This

situation was observed in the case of Gold codes. The

fundamental frequency component may even be totally lost in

the noise floor. It will therefore be necessary to

determine the greatest common divisor (GCD) of the most

significant components identified by Fisher's test. If

these components are assumed to be at multiples of the

fundamental frequency, the GCD may then be used as an

estimate of the fundamental frequency and from it an

estimate of the period will be computed.
Even so, it is possible to arrive at an incorrect

estimate. Suppose, for example, that the second and forth
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multiples of the fundamental frequency are the only reliable

components found. Since the GCD is the frequency of the

second multiple, the estimate of the period will be one half

the actual value. For this reason, the greater the number

of reliable components available for analysis, the better

the resulting estimate of the period. If only a limited

number of highly significant (say, 99th percentile)

components are available, it would be beneficial to make use

of any components of slightly lower significance (say, 95th

percentile) in deriving an estimate of the period.

This analysis will make use of the interactive FORTRAN

programs which have been introduced at various points

throughout this paper. These programs are designed to work

in conjunction with one another in the following manner:

* Phase A: These programs generate the raw data
sequences (see Appendices A,B and C).

* Phase B: This program introduces random bit errors
into the data sequence and computes the signal spectrum
by the DFT (see Appendix D).

* Phase C: This program applies Fisher's test to the
signal spectrum using the method proposed in chapter 5
(see Appendix I).

B. CASE ONE: FULL-SEQUENCES

Full-sequences are analyzed first due to the simplicity

of their spectra. Because a full-sequence may be chosen

with a period which divides the length of the DFT evenly, no

smearing of spectral components occurs. This situation

results from the fact that the FFT algorithm used to compute

the DFT is most easily implemented on power of two sized

data sets.

1. Ea~le Q=
For example, choose the data sequence to be a period

16 full-sequence. Let the error rate be 25 % and compute a
512 point DFT.

Figure 6. 1 shows the signal spectrum with the

components of highest significance labeled with the
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probabilities that noise could account for a component of

greater amplitude. Note that only the first half of the

spectrum is displayed, since the other half is a mirror

image. Only frequency components from k=-1 to k=255 are

considered by Fisher's test, for in this case

m=(512-2)/2=255. Table 2 lists the components of highest

significance with their magnitudes squared and their

respective percentiles.

Two components, at k=192 and k-64 are observed

within the 99th percentile. Their greatest common divisor

is 64. Basing an estimate of the sequence period on this

information would yield a period of 8. This is

unfortunately incorrect. Observing Table 2, reveals a

component with significance within the respectable 95th

percentile at k=32. Including this component yields a GCD

of 32 and hence, a period of 16, which is correct.

This example serves to illustrate the effectiveness

of the proposed method. Had a method been employed which

pre-determined the use of a 99th percentile significance

level, an incorrect conclusion would have resulted. This is

despite the fact of having detected two components within

the 99th percentile.

An interesting situation can be observed in this

particular example. The component at k=32 is slightly

larger than the component at k=64, yet it is calculated to

be at a considerably lower significance level. This

situation occurs whenever two components are found to be

nearly equal in magnitude. The significance calculation for

the larger component yields the probability that random

noise could account for the appearance of two components at

or above the measured value of that component. In the case

of the smaller component, the calculation yielded the

probability of three such components appearing at or above

its nearly equal measured value. The probability of three
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TABLE 2

SIGNIFICANT COMPONENTS IN EXAMPLE ONE

Comonent Magnitude Squared Percentile
M92 3461. 99.98
64 1631.0 99.47
32 1653.7 95.30
96 1210.3 85.30
128 954.0 42.39
160 959.5 25.51

such components appearing is obviously much less than the

probability of only two appearing. For that reason, the

smaller component is found to be at a higher level of

significance.
2. Ex~eTwo

For a second example, choose the data sequence again

to be a period 16 full-sequence. The error rate is

increased to 33 % and a 512 point DFT is again used.
In Figure 6.2 the spectrum is displayed, labeled

again with the appropriate probabilities. Note the smaller

magnitudes on the ordinate axes. Table 3 provides a summary

of the results of applying Fisher's test.

This example was included to illustrate the value of

this method of analysis in preventing erroneous conclusions.

The two components of highest significance present are at

k=192 and k=64, which have a GCD of 64 and hence indicate a

period of 8. Though these two components were actually

caused by the periodicity of the sequence, they are shown to

be of insufficient significance to realistically use them in

arriving at any conclusion. Attempting to use the third

largest component, at k=148, would result in a GCD of 4 and

hence an incorrect estimate for the period of 128. This

component is actually caused by noise effects.
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TABLE 3

SIGNIFICANT COMPONENTS IN EXAMPLE TWO

Component Magnitude Sauared Percentile
192 1405. 33.68
64 1072.1 7.03

148 915.5 0.00

If conclusions had been drawn from observations of

the spectrum alone, using the two or three most conspicuous

looking values, then the possibility of error would have

been great. Note that the ordinate axis is again scaled to

the largest component present and therefore the larger

values appear conspicuous. In reality, as the test shows,

they are not of a very high significance level.

C. CASE TWO: M-SEQUENCES

In the case of m-sequences, the sequence period does not

divide the DET length evenly. Therefore spectral smearing

occurs. Since the signal components are spread over several

adjacent frequencies, the normalized harmonic amplitudes

will be smaller. Consequently, Fisher's test will be

weaker. Another effect is that since only integer

frequencies can be represented, only an approximate period

can be ascertained.

Despite anticipated difficulties, the method still

performs well. Tests involving a variety of m-sequences and

error rates confirmed that Fisher's test remains adequate in

computing measures of significance. Also, simply rounding

estimates of the period to the nearest whole number leads to

satisfactory conclusions. An example is included to

illustrate these results.
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1. Eamnle Three
In this example the data sequence used is a period

15 m-sequence with an error rate of 25 %. A 512 point DFT

is used to generate the spectrum.

The spectrum is shown in Figure 6.3, with the

components of highest significance again labeled with their

probabilities. Table 4 summarizes the results of applying

Fisher's test.

In this example, only one component, at k=34, was

found in the 99th percentile and one more, at k=68, was

found in the 95th percentile. The GCD of these two

frequencies is 34, leading to a period of 15.06. Rounding

this to the nearest whole number yields an estimate for the

period of 15, which is the correct value. Attempting to

make use of the component of the next highest significance

(in the 88th percentile), at k=171, leads to complete

failure. The GCD of the three components is one, implying

that no periodicity is present in the data. Due to spectral

smearing components can bleed into adjacent frequencies,

especially at higher harmonics. For this reason, a little

dithering applied to the component at k=171 might be

helpful. If it is assumed to be located at k=170, then it

could represent the fifth harmonic and can be used to

further confirm the conclusion based on the two components

found at higher levels of significance.

This example serves to point out how this method of

analysis is weaker in the case of sequence periods which do

not evenly divide the DFT length. By comparison, Example

One was conducted under exactly the same conditions as

Example Three except that the period 16 full-sequence did

divide the DFT length evenly. Therefore, no spectral

smearing occurred. In that case, Fisher's test was more

effective because it identified components of higher

significance on which to base an estimate of the period.
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TABLE 4

SIGNIFICANT COMPONENTS IN EXAMPLE THREE

Component Magnitude Squared Percentile
34 2641.7 99.27
68 1150.8 95.77
171 1157.3 88.27
205 1165.2 73.49
239 1328.5 58.27
102 1172.3 50.37

Two components appeared in the 99th percentile and one in

the 95th percentile. Several components of lower

significance were multiples of the fundamental frequency and

some could be used if necessary to improve confidence in the

estimate, without the use of dithering. Even with these

inherent difficulties, the method of analysis yields

satisfactory results in the case of non-evenly dividing

sequences. In this situation, conclusions should be based

only on highly significant components. Any components

appearing within the vicinity of the 95th percentile may be

considered highly significant. Dithering may also be

necessary in the case of components of slightly lower

significance, especially when they represent higher

harmonics of the fundamental frequency.

D. CASE THREE: GOLD CODES

Since Gold codes are formed by summing two m-sequences

of the same period, their common period also does not divide

the DFT evenly. As a result, spectral smearing is present.

Besides sharing all the difficulties observed for

m-sequences, Gold codes introduce some further problems of

their own. Because Gold codes do not exhibit the properties

associated with pseudo-randomness nearly as well as

m-sequences, (ie. balance, run and correlation), their
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spectra are not nearly as well structured. The spectrum of

a Gold code is much more "Jumbled" in its appearance. This

has a detrimental effect on the analysis of such sequences

as demonstrated in the next example.

1. Exale Four
This example analyzes the period 31 Gold code formed

by summing the two m-sequences generated by the polynomials

f(x)=xs+x 2+1 and f(x)=xS+x 4+x3+x2 +l. The initial load for

the first shift register is 1,0,0,0,0 and for the second

shift register is 0,0,0,0,1. This particular Gold code has

a very low density of ones (12 ones and 19 zeros) and

therefore exhibits poor pseudo-randomness properties. The

error rate used is 20 %. A 512 point DFT is used to compute

the spectral components. The signal spectrum, labeled with

the probabilities computed is shown in Figure 6.4. Table 5

summarizes the results of Fisher's test.

In this example, the two components of highest

significance, at k=33 and k=165, have a GCD of 33. This

leads to an estimated period of 15.5. This estimated period

is exactly one half of the correct value. Observation of

the spectrum reveals that the odd multiples of the

fundamental frequency, including the fundamental itself, are

suppressed. It is therefore not possible to generate a

reliable estimate of the period by the proposed method.

Example Four is typical of attempts to estimate the

period of a Gold code by the method proposed in this thesis.

Though the suppression of odd harmonics observed in this

example is not typical of all Gold codes, their spectra are

in general much less well structured than the spectra of the

m-sequences from which they were derived. Due to the

difficulties discussed earlier and confirmed by numerous

experiments, this method of analysis was found to be less

effective for the analysis of Gold codes.
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TABLE 5

SIGNIFICANT COMPONENTS IN EXAMPLE FOUR

Component Magnitude Squared Percentile
33 2324.7 99.98
165 3015.0 99.87
66 1257.3 77.18

116 930.6 7.75

54



VII.

A. METHOD FOR DETERMINING SPECTRAL SIGNIFICANCE

The purpose of this research was to develop a method to

quantitatively evaluate the significance of the spectral

components of a signal. A method known as Fisher's Test of

Significance in Harmonic Analysis was found in the

literature, which promised to provide a means of

accomplishing this [Ref. 1]. Fisher's test had been applied

by previous researchers in a variety of different ways, none

of which took full advantage of the power of this test

[Refs. 2,31. A new method for applying Fisher's test is

proposed which uses the test more effectively and in a more

direct manner. In this way a simple, flexible and effective

method is found for determining the significance of the

spectral components of a signal.

Applying this method to the problem of estimating the

period of a noise garbled pseudo-random sequence met with

mixed results. In some situations a good estimate is

readily obtainable, while in others the method of analysis

is found to be less effective. The failure is not in the

methods ability to determine the significance of spectral

components, but rather in the manner in which the method is

applied to this particular problem. The lack of a well

ordered spectrum in the case of some sequences studied

proved detrimental to this method of analysis.

In conclusion , a method is developed for determining

the significance of spectral components and is shown to be

of value in harmonic analysis. As the scope of problems

dealt with by harmonic analysis is quite broad, it is

conceivable that this method may find applications in areas

other than the analysis of pseudo-random and related

sequences.
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B. SUGGESTIONS FOR FURTHER RESEARCH

There are several promising avenues for further

research. To begin with, the method developed in this

research could be applied to other problems in harmonic

analysis. Any situation involving the analysis of a simple

periodic signal in the presence of noise could be approached

using this method. One such example is the detection of the

doppler shifted blade rate of a torpedo propeller in the

noisy environment of a sonar signal.

Assuming different parameters, such as different noise

generators, the problem of evaluating the significance of

spectral components may be solved again. This may involve

rederiving the probability expression under a different

assumption concerning noise statistics.

A DFT program might be developed to operate on sequences

of zeros and ones more efficiently, possibly allowing fast

computations to be performed on longer sequences. Other

fast algorithms could also be considered.

Dithering and other techniques might be developed in

order to resolve the problems encountered when sequence

periods did not divide the transform length evenly.

The challenging problem of analyzing periodic sequences

when only a portion of the sequence is available might also

be attacked by these methods. Here less than one period

will be available for analysis so other properties of the

sequence will have to be considered.
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